星期一, 10月 18, 2010

Pipelined MIPS Lite CPU

Pipelined MIPS - Lite CPU

這是2007年的作品,其中包含解決了三種Hazard 問題及完整DataPath,當時是使用Modelsim,VCS能不能過我就不知了,沒測過,不過初學Modelsim比較合適 。

為了驗證Verilog ,當時還寫了一個小的C Compiler,可宣告變數,轉成 Assembly後,再轉成Binary for MIPS,以解決必需手動大量產生Test Bench,的窘境,至少寫個梯型公式......是沒問題的。
  • Structural Hazard
  • Control Hazard
  • Data Hazard

Document:
  • https://docs.google.com/fileview?id=0ByhRgrqRcFnLZmZlYTY2MDktNDJhZS00ZWVkLThlNmItN2Q3NGJiNGRkYWM3&hl=zh_TW
  • 請勿要求太深入的Technical support,因目前工作及學業,極其異常忙錄,不太有時間回頭看Code。

星期四, 10月 14, 2010

人員需求,以下三個領域任一:

人員需求,以下三個領域任一:

Windows Software:
  • Visual C++
  • AcitveX
  • QuickTime/VLC/Flash 10 Plugin for H.264 video stream over RTSP.
  • Windows Application for IP-Camera.
Embedded Linux Programmer:
  • GCC.
  • IPC.
  • Networking
  • System porting.
CMOS Sensor tuning:
  • OV7725 or others

星期一, 10月 11, 2010

multipart/mixed



Content-type:multipart/mixed;boundary=ThisRandomString
--ThisRandomString
Content-type:text/plain
........
--ThisRandomString
Content-type:text/plain
.........
--ThisRandomString--

Reference:

星期二, 10月 05, 2010

IEEE Transactions Circuits and Systems for Video Technology

IEEE Transactions Circuits and Systems for Video Technology

http://tcsvt.polito.it/CSVT-VARLS-CFP-onepage.pdf

CALL FOR PAPERS
Schedule
Submission deadline: Dec. 15, 2010
Notification of acceptance: Jun. 15, 2011
due: Jun. 30, 2011
publication date: Oct. 2011



Topics of interest include, but are not limited to,
Feature extraction from low-quality data
• Super-resolution
• Video stabilization
• Object detection in low-quality data
Visual tracking on resource-limited systems
• Image recognition on mobile devices
• Face image analysis on resource-limited systems
• (Soft-)biometrics (face, body, gait, … ) in low-quality data
• Gesture recognition in low-quality data
• Human activity analysis in low-quality data
• Video analysis on resource-limited platforms (UAVs, toy robots, capsule endoscopy, …)
• Energy optimization for video coding on resource-limited devices
• Multiple-view analysis of low-quality data
• Low-cost smart camera networks with embedded computing
• Video analysis on low-cost non-classical cameras (e.g., omni-directional cameras)
Real-world applications on resource-limited systems (smart environments, safety and surveillance, entertainment …)
Evaluation of video analysis algorithms on resource-limited systems


Reference:

OS Note

http://www.cis.nctu.edu.tw/~gis88507/course/linux/8_advance_io.pdf

星期一, 10月 04, 2010